
Nonequilibrium critical dynamics with domain wall and surface

N. J. Zhou1,2 and B. Zheng1,*
1Zhejiang University, Zhejiang Institute of Modern Physics, Hangzhou 310027, People’s Republic of China

2Department of Physics, National Central University, Chungli, Taiwan 320
�Received 21 January 2008; published 8 May 2008�

With Monte Carlo simulations, we investigate the relaxation dynamics with a domain wall for magnetic
systems at the critical temperature. The dynamic scaling behavior is carefully analyzed, and a dynamic rough-
ening process is observed. For comparison, similar analysis is applied to the relaxation dynamics with a free or
disordered surface.
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I. INTRODUCTION

In the past years, much effort of physicists has been de-
voted to the understanding of nonequilibrium dynamic pro-
cesses. Phase ordering dynamics, spin glass dynamics, struc-
tural glass dynamics, and interface growth, etc., are
important examples. Since the pioneer work by Janssen et al.
�1�, the universal dynamic scaling form in critical dynamics
has been explored up to the macroscopic short-time regime
�1–10�, when the system is still far from equilibrium. Al-
though the spatial correlation length is still short in the be-
ginning of the time evolution, the short-time dynamic scaling
form is induced by the divergent correlating time around a
continuous phase transition. Based on the short-time dy-
namic scaling form, new methods for the determination of
both dynamic and static critical exponents as well as the
critical temperature have been developed �4,5,7–11�. Since
the measurements are carried out in the short-time regime,
one does not suffer from critical slowing down.

In understanding the dynamic scaling form far from equi-
librium, we should keep in mind that it holds after a time
scale tmic, which is sufficiently long in the microscopic sense,
but still short in the macroscopic sense. More importantly,
the macroscopic initial condition should be taken into ac-
count in the dynamic scaling form �1,9,12�. For the dynamic
relaxation starting from an ordered state, i.e., a state with an
initial magnetization m0=1, for example, the magnetization
decays by a power law �8,9,12�. If m0 is smaller but close to
1, there emerge corrections to scaling. For the dynamic re-
laxation starting from a random state, i.e., a state without
spatial correlations and with a small m0, however, the mag-
netization does not decay, and rather shows an initial in-
crease in the macroscopic short-time regime. An independent
critical exponent x0 must be introduced to describe the scal-
ing dimension of the initial magnetization �1,6,9,10�. If m0
=0, the magnetization naturally remains zero during the dy-
namic evolution, but x0 is still needed to describe the auto-
correlation function, etc. This critical exponent also explains
the power-law decay of the remanent magnetization in spin
glasses �2,13,14�. On the other hand, the short-time dynamic
scaling form is universal, in the sense that it does not depend
on the microscopic details of the dynamic system, such as

the lattice types, interactions, and updating schemes, etc. Up
to now, the dynamic relaxation with the ordered and random
initial states has been systematically investigated.

Recent progress in the nonequilibrium critical dynamics
and its applications includes, for example, theoretical calcu-
lations and numerical simulations of the XY models and Jo-
sephson junction arrays �15–19�, magnets with quenched dis-
order �20–24�, and various critical systems �25–28�.
Dynamic reweighting methods have been proposed �21,29�,
and the dynamic approach to the weak first-order phase tran-
sitions is also attractive �21,30–32�. Recently, the aging phe-
nomenon around a continuous phase transition has been also
intensively studied �33–39�. In this case, the dynamic scaling
form for the aging phenomenon is induced by the long-range
time correlation, different from that induced by metastable
states in glassy systems below the transition temperature Tc.

On the other hand, in the past years many activities have
been devoted to the domain-wall dynamics �40–46�. For
magnetic materials, for example, a domain wall separates
domains with different spin orientations. Microscopically,
the domain wall may move and create bubbles, and macro-
scopically, it may propagate and roughen. At the zero tem-
perature, there occurs a pinning-depinning phase transition
induced by quenched randomness �40,47,48�. For a magnetic
system with weak disorder, the domain wall does not propa-
gate unless the external magnetic field h exceeds a threshold
hc. At the critical field hc, a roughening phenomenon is also
observed �49�. When a periodic external field h�t�
=h0 cos��t� is applied, the second-order phase transition is
softened to a hysteresis loop �40–42,44�. Most of these
works concerning the domain-wall motion concentrate on the
stationary state at zero or low temperatures and in response
to the external magnetic field h�t�.

In this paper, we systematically investigate the dynamic
relaxation with a domain wall at the critical temperature. For
simplicity, we assume that no external field is applied. Mac-
roscopically therefore the domain wall does not propagate.
We should only keep in mind that different from the case at
zero temperature, here the bulk also evolves in time. To be
specific, we consider the dynamic relaxation starting from a
semiordered initial state. For the Ising model, for example,
the semiordered initial state consists of two fully ordered
domains with opposite spin orientations. As time evolves, the
domain wall roughens, and looks like a growing interface. In
this paper, we call it the domain interface. Such a domain-
wall dynamics is theoretically and practically important.*Corresponding author. zheng@zimp.zju.edu.cn
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Theoretically, it is very interesting to investigate the short-
time dynamic scaling behavior starting from the semiordered
state, in comparison with that starting from the ordered or
random state. It extends the study of the domain-wall motion
at the zero or very low temperatures to the critical tempera-
ture, and especially explores the dynamic behavior far from
equilibrium. In this paper, we intend to clarify first the dy-
namic scaling behavior of model A �50�. Then the dynamic
theory may be generalized to model B. Along this direction,
one might find the way to study relevant dynamic processes
of driven diffusive lattice gases �25,51�.

Furthermore, the nonequilibrium critical dynamics around
a surface is also an important topic �52–55�. For the dynamic
relaxation starting from the random state, the dynamic evo-
lution of the magnetization at surface is controlled by both
the scaling dimension x0 of the global initial magnetization
and the static exponent �1 of the surface magnetization
�52,53�. For the dynamic relaxation starting from the ordered
state, it is expected that �1 is sufficient to describe the dy-
namic evolution of the magnetization at surface. For the dy-
namic relaxation without a surface but starting from the
semiordered state, it looks somewhat like there exists a fic-
titious surface. The dynamic evolution of the magnetization
inside the domain interface is governed by an exponent �1.
But this �1 does not correspond to a static exponent in equi-
librium, and it is induced by the semiordered initial state.
Therefore an additional purpose of this paper is to compare
the dynamic relaxation starting from the semiordered state
with that starting from the ordered state but around a surface.

In Ref. �56�, brief results on the dynamic relaxation of the
magnetization have been reported for the two-dimensional
Ising model. This paper aims at a comprehensive study of the
topic, and explores especially the dynamic scaling behavior
of the Binder cumulant �or susceptibility�, height function,
and roughness function. Furthermore, Monte Carlo simula-
tions are performed also for the three-dimensional Ising
model, to study the dimension dependence of the scaling
functions and critical exponents as well as the corrections to
scaling. In Sec. II the models and scaling analysis are de-
scribed, and in Sec. III the numerical results are presented.
Finally, Sec. IV includes the conclusions.

II. MODEL AND SCALING ANALYSIS

A. Model

The d-dimensional Ising model is the simplest model for
magnetic materials, exhibiting a second-order phase transi-
tion. The Hamiltonian is written as

−
1

kT
H = K�

�ij�
SiSj , �1�

where Si= �1 is an Ising spin at site i of a square or cubic
lattice, the sum is over the nearest neighbors, and T is the
temperature. In this paper, we set the temperature at its criti-
cal value Tc; or in other words, we set K at its critical value
Kc. The Hamiltonian of the Ising model itself does not in-
clude an intrinsic dynamics. For example, Monte Carlo algo-
rithms may be introduced to simulate the dynamic evolution

of the system. It is generally believed that the Monte Carlo
dynamics is in the same universality class of the Langevin
equation.

Let us consider a kind of dynamic relaxation process at
the critical temperature. After a macroscopic initial state at
very low temperatures is prepared, the dynamic system is
suddenly quenched to the critical temperature, and then re-
leased to the dynamic evolution of model A �9,50�. For the
dynamics of model A, the order parameter and other relevant
physical quantities are not conserved during the dynamic
evolution. In Monte Carlo simulations, it can be simply re-
alized with a standard one-spin flip. In this paper, the heat-
bath algorithm is always used in the dynamic Monte Carlo
simulations. Selecting a single spin Si, we flip it with the
transition rate,

P�Si → Si�� �
exp�KSi�� j�i� Sj�

exp�K� j�i� Sj� + exp�− K� j�i� Sj�
, �2�

where j�i� labels the nearest neighbors of the site i, and c is
the normalization constant. In fact, other Monte Carlo algo-
rithms, such as Metropolis algorithms, Monte Carlo algo-
rithms with a multispin flip, and rejection-free Monte Carlo
algorithms, etc., yield the same results. The condition is that
the algorithms should be local, i.e., only spins in a local
region are flipped in a single flip.

With Monte Carlo simulations, we first study the critical
relaxation starting from a semiordered state, taking the two-
dimensional �2D� and three-dimensional �3D� Ising model as
examples. The Ising model is defined on a rectangular lattice
2L�L in two dimensions and 2L�L2 in three dimensions,
with a linear size 2L in the x direction and L in the other
directions. Periodic boundary conditions are used in all the
directions. The semiordered state is such a state, that spins
are positive on the sublattice Ld �d=2 or 3� at the right side
and negative on the sublattice Ld at the left side. For conve-
nience, we set the x axis such that the domain wall between
the positive and negative spins is located at x=0. So the x
coordinate of a lattice site is a half integer.

After preparing the semiordered initial state, we update
the spins with the heat-bath algorithm at the critical tempera-
ture Tc. Since no external magnetic field is added, macro-
scopically the domain wall does not move. As time evolves,
however, the domain wall fluctuates and creates bubbles. As
a result, the domain wall becomes thicker and thicker, and a
dynamic roughening process occurs. Therefore we call it a
domain interface. In Fig. 1, the dynamic evolution of the
spin configuration around the domain wall is illustrated.
Somewhat different from a standard growing interface, here
the bulk evolves in time. In analyzing the dynamic properties
of the domain interface, this must be kept in mind.

For comparison, we also perform Monte Carlo simula-
tions of the Ising model with a free or disordered surface, but
starting from the ordered state. In this case, the lattice is
taken to be Ld �d=2 or 3�. For the free surface, a free bound-
ary condition is used in the x direction, while periodic
boundary conditions are used in other directions. For conve-
nience, we set the x axis such that the free surface locates at
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x=1 or L. For the disordered surface, the spin Si on the
surface couples to a strong random field hi through the inter-
action −Hi /kT=KhiSi. The disordered boundary condition is
only implemented in the x direction, and periodic conditions
are used in other directions. Since the initial state is the or-
dered state, the magnetization decays in time. In particular,
the magnetization is also x dependent due to the geometric
surface. The dynamic behavior of the magnetization around
the surface is governed by the surface exponents, while that
at bulk is controlled by the bulk exponents. The region af-
fected by the geometric surface grows in time, and it looks
like the surface becomes thicker and thicker. Phenomeno-
logically, this dynamic behavior is similar to that of the do-
main interface.

Finally, to expose the dynamic evolution of the bulk, we
perform Monte Carlo simulations of the Ising model with
periodic boundary conditions in all directions, starting from
the ordered state. The lattice is taken to be Ld in d dimen-
sions.

B. Scaling analysis

We first analyze the dynamic scaling behavior of the do-
main interface. Due to the semiordered initial state, the time
evolution of the dynamic system is inhomogeneous in the x
direction. Therefore we measure the magnetization and its
second moment as functions of x and t. In two dimensions,
for example,

M�k��t,x� =
1

Lk	
�
y=1

L

Sxy�t��k�, k = 1,2. �3�

Here Sxy�t� is the spin at the time t on the lattice site �x ,y�, L
is the lattice size, and �¯� represents the statistical average.

For convenience, we also use M�t ,x�
M�1��t ,x� to denote
the magnetization. Then we can define a time-dependent
Binder cumulant �9,56�,

U�t,x� =
M�2��t,x�
M�t,x�2 − 1. �4�

The susceptibility M�2��t ,x�−M�t ,x�2 or the Binder cumulant
U�t ,x� describes the fluctuation in the y direction. In three
dimensions, we simply use Sxyz to denote the spin on the
lattice site �x ,y ,z�, and similarly define the magnetization
and Binder cumulant.

In order to characterize the growth of the domain inter-
face and its fluctuation in the x direction, we introduce a
height function and its second moment in the x direction,

h�k��t� =
1

Lk	
�
x=1

L

Sxy�t��k�, k = 1,2. �5�

Here �¯� represents not only the statistic average but also
the average in the y direction. As usual, we also use the
notation h�t�
h�1��t�. Then the roughness function of the
domain interface is defined as

�2�t� = h�2��t� − h�t�h�t� . �6�

Except for the scaling dimension of the magnetization, the
height function measures the thickness of the domain inter-
face, while the roughness function represents the fluctuation
of the domain interface.

At the critical temperature Tc and in the thermodynamic
limit, there are two length scales in the dynamic system, i.e.,
x and the nonequilibrium spatial correlation length ��t�. For a
finite system, the lattice size L is an additional length scale.
In general, one may believe that ��t� universally grows as
��t�� t1/z in all spatial directions, because of the homogene-
ity of the interactions in the Hamiltonian. Therefore general
scaling arguments lead to the scaling form of the magnetiza-
tion and its second moment

M�k��t,x,L� = t−k�/�zM̃�k��t1/z/x,t1/z/L�, k = 1,2. �7�

Here � and � are the static exponents, and z is the dynamic
exponent. On the right side of the equation, the overall fac-
tors t−k�/�z indicates the scaling dimension of M�k�, and the

scaling function M̃�k��t1/z /x , t1/z /L� represents the scale in-
variance of the dynamic system. In general, the scaling form
in Eq. �7� holds already in the macroscopic short-time re-
gime, after a microscopic time scale tmic �1,9�.

For the magnetization, the scaling function

M̃�t1/z /x , t1/z /L� is independent of L in the thermodynamic
limit L→�. Then the scaling form is simplified to

M�t,x� = t−�/�zM̃�t1/z/x� . �8�

For the susceptibility, it is different. For a sufficiently large
lattice and in the short-time regime, the nonequilibrium spa-
tial correlation length ��t� is much smaller than the lattice
size L. Therefore the spatially correlating terms �Sxy1

Sxy2
�

− �Sxy1
��Sxy2

� with �y2−y1����t� can be neglected. In other
words, one of the two summations over y1 and y2 in the
susceptibility M�2��t ,x�−M�t ,x�2 is suppressed. It then leads

0

128

256

-40 40 -40 -40 -4040 40 40

2D Ising model

t=0 t=10 t=100 t=1000

FIG. 1. Dynamic relaxation from a semiordered state is simu-
lated for the 2D Ising model at the critical temperature. The spin
configuration of the domain interface is shown in a spatial window
�−40,40� at the time t=0,10,100,1000 �from left to right�. Black
points denote Si=−1 and white points denote Si=1. The lattice size
L=256 is used in the Monte Carlo simulations.
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to the finite-size behavior M�2��t ,x�−M�t ,x�2�1 /Ld−1 �d
=2 or 3� �9�. Together with Eqs. �7� and �8�, one may derive
the scaling form of the Binder cumulant �9�

U�t,x� =
t�d−1�/z

Ld−1 Ũ�t1/z/x� . �9�

The Binder cumulant is interesting, for only the dynamic
exponent z is involved.

By definition, the height function h�t� is nothing but the
average magnetization in the positive domain, i.e., h�t�
=�x�0M�t ,x� /L. In general, h�t� does not obey a simple
power law. Its behavior replies on the scaling function

M̃�t1/z /x�. In fact, one may deduce a scaling form for h�t�
from Eq. �7�,

h�t� = t−�/�zh̃�t1/z/L� . �10�

Different from M�t ,x�, here one should not ignore the depen-

dence on the lattice size L, for the scaling function h̃�t1/z /L�
just represents the dynamic effect of the domain interface.
This is obvious from the definition h�t�=�x�0M�t ,x� /L. On
the other hand, one should also note that the height function
here is scaled as the magnetization, not a spatial length.

Similar to Eq. �10�, one may also assume that the scaling
form for the roughness function is �2�t�= t−2�/�/zF�t1/z /L�.
For later convenience, we separate a factor t1/z /L from
F�t1/z /L�, and rewrite the scaling form as

�2�t� =
t�1−2�/��/z

L
�2̃�t1/z/L� . �11�

In general, �2�t� does not exhibit a power-law behavior. This
is different from a standard growing interface. The reason is
that here �2�t� includes fluctuations from the domain inter-
face and the bulk. In fact, we will show in the next section

that the scaling function �2̃�t1/z /L� describes the fluctuation
induced by the domain interface.

The scaling forms in Eqs. �7�–�11� can be also applied to
the dynamic relaxation with a free or disordered surface, but
starting from the ordered state. One should only keep in
mind that �, �, and z are the critical exponents at bulk. The
critical exponents at surface should be deduced from the
scaling functions in Eqs. �7�–�11�. In this case, the lattice is
taken to be Ld. The inhomogeneity in the x direction is in-
duced by the surface.

The purpose of this paper is to investigate whether the
scaling forms in Eqs. �7�–�11� do hold in the dynamic relax-
ation with the domain interface and with the free or disor-
dered surface. With Monte Carlo simulations, we study char-
acteristics of the scaling functions, and extract corresponding
critical exponents. Dynamic systems with the domain inter-
face and with the free or disordered surface share some com-
mon features, although they are intrinsically different. The
domain interface is induced by the geometric structure of the
semiordered initial state, while the dynamic relaxation with
the free or disordered surface is controlled by the geometric
surface which remains even in equilibrium.

It is important that the height function h�t� and roughness
function �2�t� in Eqs. �5� and �6� include the dynamic evo-
lution of the bulk. Therefore their behaviors deviate from
those of a standard growing interface. To obtain the dynamic
features of a pure growing interface such as the power-law
behavior and the roughness exponent, etc., we need to sub-
tract the contribution of the bulk. Therefore we finally per-
form Monte Carlo simulations of the Ising model on a lattice
Ld with periodic boundary conditions in all directions, and
starting from the ordered state. In this case, the dynamic
system is homogeneous in all directions. The height function
hb�t� and the roughness function �b

2�t� are just the line mag-
netization and its susceptibility in the x or y direction. The

scaling functions h̃�t1/z /L� and �2̃�t1/z /L� in Eqs. �10� and
�11� are constants. In other words, hb�t� and �b

2�t� show a
power-law behavior.

Then we may redefine the pure height function and rough-
ness function for the dynamic relaxation of the domain inter-
face or around the surface by subtracting the contribution
from the bulk

Dh�t,L� = hb�t� − h�t� , �12�

D�2�t,L� = �2�t� − �b
2�t� . �13�

We may expect that Dh�t ,L� and D�2�t ,L� exhibit a power-
law behavior as in the case of a standard growing interface.
Here we should note that we define Dh�t ,L� as hb�t�−h�t�
rather than h�t�−hb�t�, for h�t� decays in time faster than
hb�t�.

III. MONTE CARLO SIMULATION

For the 2D Ising model, our main results are presented
with L=512 at Kc=0.440 69, and the maximum updating
time is tM =25 600. Additional simulations with L=1024 and
L=256 are performed, to investigate the finite-size scaling
behavior and finite-size effect. The total samples for average
are 24000. For the 3D Ising model, the main results are ob-
tained with L=128 at Kc=0.221 65, and the maximum up-
dating time is tM =2560. Additional simulations with L
=256 and L=64 are performed to investigate the finite-size
scaling behavior and finite-size effect. The total samples for
average are 30 000. The statistical errors are estimated by
dividing the total samples into two or three subgroups. If the
fluctuation in the time direction is comparable with or larger
than the statistical error, it will be taken into account.

Theoretically, the scaling forms described in the previous
section hold in the macroscopic short-time regime, after a
microscopic time scale tmic. tmic is not universal, and relies on
microscopic details of the dynamic systems. In Monte Carlo
simulations, for example, tmic is typically tens or hundreds of
Monte Carlo time steps �9�. With quenched disorder or frus-
tration, tmic could be longer. For the simple Ising model with
the nearest neighbor interactions, tmic is rather short, about
10–20 time steps. Therefore critical exponents are typically
obtained in the time intervals �20, 25 600� in two dimensions
and �10, 2560� in three dimensions. From the data collapse
of different x and L, one may observe the scaling functions in
a even larger time window.
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A. Magnetization

The time evolution of the magnetization of the 2D Ising
model starting from the semiordered state is displayed in Fig.
2. For a sufficiently small s, e.g., x=255.5 and t	 tM
=25 600, M�t ,x� approaches the nonlinear decay at bulk,
M�t ,x�� t−�/�z �9�. The exponent � /�z=0.0580�3� measured
from the slope of the curve is well consistent with �=1 /8,
�=1, and z=2.16�1� reported in the literature �9�. For a suf-
ficiently large s, e.g., x=0.5 and t�20, M�t ,x� exhibits also
a power-law behavior, but decays much faster than at bulk.
In other words, we catch some features of the scaling func-

tion M̃�s� in Eq. �8�,

M̃�s� � �const s → 0

s−�0/� s → �
� , �14�

with s= t1/z /x. In the limit s→�, one may define an interface
exponent �1 such that

M�t,x� � t−�1/�z · x�0/�, �1 = � + �0. �15�

Inside the interface, the power-law decay of the magnetiza-
tion is governed by the interface exponent �1, while outside
the interface, it is controlled by the bulk exponent �. In Fig.
2, one measures �1 /�z=0.518�4�, and then calculates �1
=1.119�9� and �0 /�=0.994�9�. Similar to the exponent x0 in
the dynamic relaxation starting from the random state �1,9�,
�0 here is induced by the semiordered initial state. Account-
ing for the error, one may believe �0 /�=1, which suggests
that M�t ,x� is an analytic function of x. This result is also
supported by the simulations of the 3D Ising model. Since �1
is much bigger than �, the magnetization inside the domain
interface decays much faster than that at bulk. This phenom-
enon is understandable, for the dynamic evolution of the
spins in the positive domain is strongly affected by those in
the negative domain, and vice versa.

To fully confirm the scaling form in Eq. �8�, for example,
we fix x�=1.5, and change the time scale t of another x to
�x� /x�zt, and the scale of M�t ,x� to �x� /x�−�/�M�t ,x�. As
shown in Fig. 2, all data of different x nicely collapse to the
curve of x�=1.5. This validates Eq. �8�. Alternatively, we
may plot t�/�zM�t ,x� as a function of s= t1/z /x. According to
Eq. �8�, all data of different x should collapse onto the master

curve M̃�s�. This is shown in Fig. 3. Clearly, M̃�s�→const

when s→0, while M̃�s�→s−�0/� when s→�.
For comparison, the time evolution of the magnetization

of the 2D Ising model with a free surface but starting from
the ordered state is shown in Fig. 4. For a sufficiently small
s, e.g., x=256 and t	 tM =25 600, M�t ,x� approaches also
the nonlinear decay at bulk, M�t ,x�� t−�/�z with � /�z

0.1 1 10 100 1000 10000
t

0.01

0.1

1

M(t, x)

x = 0.5

1.5

3.5

4.5

15.5

31.5

63.5

slope = 0.518

slope = 0.0580

255.5

2D Ising model with domain interface

FIG. 2. The magnetization of the 2D Ising model starting from
the semiordered state is plotted with solid lines on a double-log
scale. Dashed lines show the power-law fits. According to Eq. �8�,
data collapse for different x is demonstrated at a fixed x�=1.5. Solid
circles, solid squares, solid triangles, pluses, open circles, open
squares, and open triangles correspond to x=0.5, 1.5, 3.5, 7.5, 15.5,
31.5, and 63.5, respectively. From Ref. �56�, this figure is repro-
duced by permission of Europhys. Lett.

0.1 1 10s

0.1

1

∼
M(s)

domain interface

disordered surface

free surface

slope = 0.998

slope = 0.372

2D Ising model

FIG. 3. The scaling functions M̃�s� with s= t1/z /x is plotted on a
double-log scale, for the 2D Ising model with the free surface,
disordered surface, and domain interface �from above�. Data col-
lapse for different x is observed. Dashed lines show the power-law
fits. From Ref. �56�, this figure is reproduced by permission of
Europhys. Lett.
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FIG. 4. The magnetization of the 2D Ising with a free surface
and starting from an ordered state, is plotted with solid lines on a
double-log scale. Dashed lines show the power-law fits. According
to Eq. �8�, data collapse for different x is demonstrated at a fixed
x�=2. Solid circles, solid triangles, pluses, open circles, open
squares, and open triangles correspond to x=1, 4, 8, 16, 32, and 64,
respectively.
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=0.0579�4�. For a sufficiently large s, e.g., x=1 and t�20,
M�t ,x� exhibits also a power-law behavior. Assuming again
the scaling Ansätze in Eqs. �14� and �15�, the measurement
of the slope yields �1 /�z=0.231�1�. Then one calculates
�1=0.499�2�. It is in good agreement with the surface expo-
nent �s=1 /2 for the free surface �57�. Now, the exponent
�0 /� is estimated to be 0.374. Therefore M�t ,x� is not an
analytic function of x, when x approaches the free surface.
This is very different from the domain interface. Finally, the
data collapse according to Eq. �8� is also shown in Fig. 4,
and it fully confirms the scaling form.

As in Figs. 2 and 4, similar analysis can be carried out for
the magnetization of the 2D Ising model with a disordered
surface. For a small s, one measures � /�z=0.0578�7�. For a
large s, careful analysis shows that the power-law behavior is
not perfect �56�. In the equilibrium state, one may show that
the surface exponent �s of the disordered surface remains
1/2, but with a logarithmic correction to scaling �57�. There-
fore we fit the time-dependent magnetization at x=0.5 with a
logarithmic correction to scaling, i.e., M�t�=c1t−
1 / �1
+c2 ln�t��1/2, and derive 
1=0.231, consistent with �1 /�z
=0.231�1� for the free surface. If one fixes c2=0, it yields

1=0.272, significantly different from 0.231�1�.

In Fig. 3, the scaling function M̃�s� with s= t1/z /x is plot-
ted for the domain interface, free surface, and disordered
surface. We clearly observe the characteristic of the scaling
function in Eq. �14�, and measure the exponent �0
=0.998�5� for the domain interface, and 0.372�6� for the free

surface. Due to the logarithmic correction to scaling, M̃�s� of
the disordered surface decays faster than that of the free sur-
face at the large s regime.

We emphasize that in the case of the free surface or dis-
ordered surface, the exponent �1
�s does describe the criti-
cal behavior of the magnetization at the surface in equilib-
rium. Around the free surface, for example, M�����−���1

with � being the reduced temperature. It is important that �1
is induced by the geometric surface which remains forever.
In the case of the domain interface, however, �1 is induced
by the geometric structure of the semiordered initial state.
When the dynamic system reaches its equilibrium state, the
influence of the initial state disappears and the critical behav-
ior of the magnetization is governed by the bulk exponent �
everywhere. We should keep in mind, however, that exactly
at the critical temperature �i.e.,�=0� and in the thermody-
namic limit, the dynamic system never reaches its equilib-
rium state in a finite time due to the divergent correlating
time. According to Eq. �8� therefore the domain interface and
the free or disordered surface behave similarly.

For the 3D Ising model, the static and dynamic exponents
at bulk are known to be �=0.327�1�, �=0.630�2�, and z
=2.04�1� �58�. For the free surface, the surface exponent is
�s=0.795�10� �59�. Following the procedure for the 2D Ising
model, we have analyzed the scaling behavior of the dy-
namic relaxation with the domain interface, free surface, and
disordered surface. Special attention is drawn to the critical
exponent �0 /�.

Let us first consider the domain interface. For a small s,
the magnetization shows the power-law behavior at bulk,
M�t ,x�� t−�/�z. The critical exponent is estimated to be

� /�z=0.253�5�, well consistent with the value 0.253�1� at
bulk �58�. For a large s, e.g., x=0.5 and t�10, the magneti-
zation exhibits the power-law behavior M�t ,x�� t−�1/�z with
�1=�+�0 in Eq. �15�. From the slope of the curve, one
obtains �1 /�z=0.744�2�. Then one calculates the critical ex-
ponent �0 /�= �0.744−0.253��2.04=1.002�4�. For the 2D
Ising model, �0 /�=0.998�5�. These two measurements of
�0 /� strongly suggest �0 /�=1, and it is dimension-
independent. Therefore M�t ,x� is an analytic function of x.

In Fig. 5, the scaling functions M̃�s� of the magnetization for
the 3D Ising model is plotted. Data collapse for different x is
observed. From the slope of the curve in the large s regime,
one measures �0 /�=1.001�6�.

Similar analysis is applied to the magnetization of the 3D
Ising model with the free and disordered surfaces, and the
scaling function is also shown in Fig. 5. Different from the
case of the 2D Ising model, the large-s tails of the scaling

function M̃�s� for the free and disordered surfaces look par-
allel to each other. In the inset of the figure, the magnetiza-
tion at x=1.0 is displayed for both the free and disordered
surfaces. The slope is �1 /�z=0.623�5� for the free surface,
and 0.632�2� for the disordered surface. The difference is
only one or two percent, and the correction to scaling is
rather small. For the free surface, one estimates �1
=0.623�5���z=0.801�6�. Alternatively, one may also mea-
sure �0 /�=0.747�6� from the scaling function obtained with
different x, and then calculates �1=�+�0=0.798�4�. These
values of �1 are well consistent with the surface exponent
�s=0.795�10� �59�.

B. Binder cumulant

In Fig. 6, the time evolution of the Binder cumulant is
displayed for the 2D Ising model starting from the semior-
dered state. For a sufficiently small s, e.g., x=255.5 and t

0.1 1 10 100
s

0.01

0.1

1

∼
M(s)

10 100 1000t

0.01

0.1

M(t,1)

slope = 1.001

slope = 0.747

free surface

disordered surface

domain interface

free surface
slope = 0.623

disordered surface

3D Ising model

FIG. 5. The scaling function M̃�s� with s= t1/z /x is plotted on a
double-log scale, for the 3D Ising model with the free surface,
disordered surface, and domain interface �from above�. Data col-
lapse for different x is observed. Dashed lines show the power-law
fits. No logarithmic correction is detected for the disordered sur-
face. In the inset, the magnetization at x=1.0 for the disordered
surface and free surface are shown.
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	 tM =25 600, the Binder cumulant exhibits the power-law
behavior at bulk, U�t ,x�� t�d−1�/z. From the slope, one mea-
sures �d−1� /z=0.468�4�, and it is consistent with �d−1� /z
=0.463�3� calculated from z=2.16�1�. For a sufficiently
large s, e.g., x=0.5 and t�20, the Binder cumulant grows
also by a power law, but much faster than that at the large x.
Then we extract the characteristic of the scaling function

Ũ�s�,

Ũ�s� � �const s → 0

sd0 s → �
� . �16�

In the limit s→�, one may derive from Eqs. �9� and �16�

U�t,x� � t�d−1+d0�/z/�Ld−1xd0� . �17�

From the curve of x=0.5 in Fig. 6, one estimates �d−1
+d0� /z=1.390�8�. Taking z=2.16 as input, one calculates
d0=1.390�2.16− �d−1�=2.00�2�, very close to 2.

In Fig. 7, the Binder cumulant is plotted for the 3D Ising
model starting from the semiordered state. For a small s, one
observes the power-law behavior at bulk, U�t ,x�� t�d−1�/z.
From the slope of the curve, one obtains 0.995�12�, and then
estimates z=2.01�2�, consistent with z=2.04�1� from the lit-
erature �58�. For a large s, e.g., x=0.5 and t�10, one esti-
mates �d−1+d0� /z=1.963�10� from the power-law behavior
in Eq. �17�, then derives d0=2.01�2�. Again it is close to 2.
To further verify the scaling form in Eq. �9�, we fix x�=1.5,
and change the time scale t of another x to �x� /x�zt, and the
scale of U�t ,x� to �x� /x�d−1U�t ,x�. As shown in Figs. 6 and
7, all curves of different x nicely collapse to the curve of
x�=1.5. This fully confirms the scaling form in Eq. �9�.

To reveal the lattice-size dependence of the Binder cumu-
lant in Eq. �9�, we fix x=0.5, and plot U�t ,L�
U�t ,x=0.5�
as a function of t for different L in Fig. 8. Obviously, all
curves of different L and in two and three dimensions are
parallel to each other, and exhibit the power-law behavior in
Eq. �17�. We then fix a lattice size L�, and change the scale of

U�t ,L� of another L to U�t ,L��L� /L�−�d−1�. Data collapse is
clearly observed for both the 2D and 3D Ising models.

In Fig. 9, the scaling function Ũ�s� with s= t1/z /x is plotted
for the 2D Ising model with the domain interface and free
surface. Data of different x collapse clearly onto their master
curves. For the domain interface, the asymptotic behavior of

Ũ�s� in Eq. �16� is exposed. The exponent d0 is measured to
be 2.00�2�, the same as that extracted from the single curve

of x=0.5 in Fig. 6. For the free surface, Ũ�s�→const is also
observed in the limit s→0. In the large s regime, however, it
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255.5

2D Ising model with domain interface

FIG. 6. The Binder cumulant of the 2D Ising model with the
domain interface is plotted with solid lines on a double-log scale.
Dashed lines show the power-law fits. According to Eq. �9�, data
collapse for different x is demonstrated at a fixed x�=1.5. Solid
squares, solid triangles, pluses, open circles, open squares, and
open triangles correspond to x=0.5, 3.5, 7.5, 15.5, 31.5, and 63.5,
respectively.
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FIG. 7. The Binder cumulant of the 3D Ising model with
the domain interface is plotted with solid lines on a double-log
scale. Dashed lines show the power-law fits. According to Eq. �9�,
data collapse for different x is demonstrated at a fixed x�=1.5.
Solid circles, solid triangles, pluses, open circles, open squares,
and open triangles correspond to x=0.5,3.5,7.5,15.5,31.5,63.5,
respectively.
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FIG. 8. The Binder cumulant at x=0.5 for the Ising model with
the domain interface is plotted with solid lines on a double-log
scale. The lower three solid lines are for the 2D Ising model with
the lattice size L=128, 256, and 512. The x and y axes are on the
bottom and right sides. According to Eq. �9�, the curves collapse to
the curve at L�=256. Circles and triangles correspond to L=512
and 128, respectively. The upper three solid lines are for the 3D
Ising model with L=32, 64, and 128. The x and y axes are on the
top and left sides. Data collapse is observed. Circles and triangles
correspond to L=128 and 32, respectively.
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does not exhibit a power-law behavior. Instead, it increases

by a logarithmic law, Ũ�s�=a0+a1 ln�s�. In other words, the
exponent d0 of the free surface is effectively 0 but with a
logarithmic correction. This result indicates that the spatial
fluctuation of the domain interface grows in time much faster
than that of the free surface.

In three dimensions, d−1−2�1 /� of the free surface is
negative. Starting from an ordered state, the susceptibility
decays in time. Therefore one suffers from large fluctuations,
and it is difficult to address the dynamic behavior of the
susceptibility or Binder cumulant. For the disordered surface,
the situation is even more complicated. Since our paper is
already lengthy, we will not go into the details here.

C. Height function and roughness function

In the preceding two subsections, we have analyzed the
temporal and spatial structures of the magnetization M�t ,x�
and Binder cumulant U�t ,x�. Up to now, however, we have
not yet touched how the interface grows and fluctuates in the
x direction. For this purpose, we have introduced the height
function h�t� and the roughness function �2�t� in Eqs. �5� and
�6�. For a standard growing interface, the time evolution of
the height function h�t� may be not so important, but the
roughness function �2�t� exhibits a power-law behavior gov-
erned by the roughness exponent.

In Fig. 10, the height function h�t� is plotted for the 2D
Ising model. One finds a power-law behavior for the dy-
namic relaxation of the bulk, i.e., with periodic boundary
conditions in all directions. The slope of the curve is
0.0576�3�, consistent with � /�z=0.0579�3� from the litera-
ture �9�. For the domain interface and free surface, the height
function decreases faster than a power law. Actually, the
curves can be fitted by a double power law, e.g., h�t�=c0t
0

−c1t
1. Although this four-parameter fit could not produce
very accurate values of 
0 and 
1, it leads us to introduce the
pure height function Dh�t ,L� in Eq. �12�. The conjecture is

that the term c1t
1 represents the pure interface, and c0t
0 is
the magnetization of the bulk. In Fig. 10, we do observe a
power-law behavior for the pure height function Dh�t ,L�.
The slope of the curves is estimated to be 0.407�2�. In com-
parison with that for a standard growing interface, this
power-law behavior is special for the domain interface.

In Fig. 11, the roughness function is plotted for the 2D
Ising model. In the case of the bulk, �2�t� is expected to
obey a power law, although there exist corrections to scaling.
Anyway, one may roughly estimate the exponent �1
−2� /�� /z to be 0.345�14�, consistent with z=2.16�1�. Due to
corrections to scaling, the dynamic behavior of �2�t� looks
unclear for the domain interface and free surface. However,
the pure roughness function D�2�t ,L� in Eq. �13� obviously
obeys a power-law behavior for both the domain interface
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FIG. 9. The scaling function Ũ�s� with s= t1/z /x is plotted on a
double-log scale, for the 2D Ising model with the domain interface
and free surface. Data collapse for different x is observed. The
dashed line shows the power law fit, and the solid line indicates the
logarithmic fit.
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FIG. 10. The height function h�t� of the 2D Ising model is
plotted on a double-log scale. The three upper solid lines are for the
domain interface, free surface, and bulk �from below�. The lower
solid lines are the pure height function Dh�t ,L� of the free surface
and domain interface �from below�. Dashed lines show the power-
law fits, and stars are from a double power-law fit.
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FIG. 11. The roughness function �2�t� of the 2D Ising model is
plotted on a double-log scale. The three upper solid lines are for the
domain interface, free surface, and bulk �from above�. The lower
solid lines are the pure roughness function D�2�t ,L� for the domain
interface and free surface �from above�. Dashed lines show the
power-law fits, and stars are from a double power-law fit.
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and free surface. It seems that �2�t� and �b
2�t� have the same

correction to scaling. Neglecting the corrections to scaling,
one may assume

�2̃�u� = �c without interface

c + ud� with interface
� . �18�

Then one derives

D�2�t,L� =
t�1−2�/�+d��/z

L1+d�
. �19�

In Fig. 11, the curves of D�2�t ,L� for the domain interface
and free surface are parallel to each other. From the slopes of
the curves one measures �1−2� /�+d�� /z=0.808�2�. Then
one calculates the exponent d�=0.995�4�. The fluctuations of
the domain interface and free surface grow faster in time
than that of the bulk. More importantly, the exponent �1
−2� /�+d�� /z is independent of the interface exponent or
surface exponent �1.

One may also verify the lattice-size dependence,
D�2�t ,L��1 /L1+d� in Eq. �19�. In Fig. 12, D�2�t ,L� is plot-
ted for different lattice sizes. Obviously, all the curves are
parallel to each other. Then we fix a lattice size, e.g., L�
=256, and change the scale of D�2�t ,L� of another L to
D�2�t ,L��L� /L�−�1+d��. Taking d�=1 as input, data collapse
is clearly observed.

For a standard growing interface, the roughness function
grows by �2�t�� t2
/z, and 
 is the so-called roughness ex-
ponent. According to Eq. �19�, the roughness exponent for
the domain interface and free surface is 
= �1−2� /�
+d�� /2=0.872�8�. On the other hand, from the dimension
counting one may expect Dh�t ,L�� t
/z for the pure height
function. From the measurement 
 /z=0.407�2� in Fig. 10,
one calculates 
=0.879�6�. These two measurements of the
exponent 
 are in good agreement with each other. In the
scaling analysis of D�2�t ,L�, −� /� represents the scaling
dimension of the magnetization. One may remove it, e.g., by

dividing D�2�t ,L� by M�t�2 of the bulk. Then the real rough-
ness exponent is �1+d�� /2. Since d�=1, the roughness ex-
ponent is just 1. This conclusion holds also for the Ising
model in three dimensions. But the measurements of the ex-
ponents are somewhat complicated in this case, for 1
−2� /�=−0.038 is around zero.

IV. CONCLUSION

In summary, we have investigated the nonequilibrium
critical dynamics with a domain interface, a free surface and
a disordered surface, taking the two- and three-dimensional
Ising models as examples. The dynamic scaling behavior is
revealed, and a dynamic roughening process is observed.
Critical exponents characterizing the magnetization, Binder
cumulant, height function, and roughness function are ex-
tracted, and the results are summarized in Table I.

�i� For the domain interface, �0 /� for the magnetization in
Eq. �14� takes values close to 1 for both the two- and three-
dimensional Ising models. It indicates that the magnetization
M�t ,x� is an analytic function of x. Especially, M�t ,x� inside
the domain interface decays much faster in time than that at
bulk, for the interface exponent �1=�+�0 is much bigger
than the bulk exponent �. For the free surface, the values of
�1
�s are in agreement with the measurements in equilib-
rium. For the disordered surface, �1
�s

� takes the same
value as that of the free surface, but with a logarithmic cor-
rection to scaling in two dimensions.

�ii� For the domain interface, the exponent d0 for the
Binder cumulant in Eq. �16� takes values close to 2 in two
and three dimensions. For the free surface, d0
ds is effec-
tively 0 in two dimensions, but with a logarithmic correction
to scaling. These results indicate that the fluctuation in the y
direction inside the domain interface is stronger than that
around the free surface. In fact, one can derive from Eqs.
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FIG. 12. The pure roughness function D�2�t ,L� of the domain
interface is plotted for the 2D Ising model with solid lines on a
double-log scale, for L=512, 256, 128, and 64 �from below�. Ac-
cording to Eq. �19�, data collapse is observed at the curve of L�
=256. Solid circles, solid squares, and solid triangles correspond to
L=512, 128, and 64, respectively.

TABLE I. In the upper sector, the exponents �0 /�, �1, and d0

are for the domain interface, �s and ds are for the free surface, and
�s

� is for the disordered surface. The exponent d� is for both the
domain interface and free surface. In the measurements of �s

� and ds

for the 2D Ising model, logarithmic corrections to scaling are taken
into account. In the lower sector, the static exponents � and �, the
dynamic exponent z, and the surface exponent �s are taken from the
literature.

2D Ising 3D Ising

M�t� �0 /�
�1

0.998�5�
1.123�5�

1.001�6�
0.958�6�

�1
�s 0.499�4� 0.801�6�
�1
�s

� 0.499 0.812�4�
U�t� d0 2.00�2� 2.01�2�

ds 0

�2�t� d� 0.995�4� 1

�s 1/2 �57� 0.795�10� �59�
� 1/8 0.327�1� �58�
� 1 0.630�2� �58�
z 2.16�1� �9� 2.04�1� �58�
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�14� and �16� that inside the domain interface, the suscepti-
bility behaves as M�2��t ,x�−M�t ,x�2� t�d−1−2�/��/z, the same
as that at bulk. Around the free surface, the susceptibility is
M�t ,x��2�−M�t ,x�2� t�d−1−2�1/��/z, different from that at bulk.

�iii� For both the domain interface and free surface, the
roughness function in Eq. �11� does not obey a power law,
for it includes the fluctuation of the bulk and domain inter-
face. After subtracting the contribution of the bulk, the pure
roughness function in Eq. �13� does exhibit a power-law be-
havior in Eq. �19�, and the roughness exponent is identified
to be 
= �1+d�� /2. Interestingly, the exponent d� takes val-
ues close to 1 for both the domain interface and free surface,
and also independently of the spatial dimension. In other

words, the fluctuation of the interface in the x direction is
independent of the exponent �1.

Theoretically, the above results need further understand-
ing. For example, it is a challenge to derive the dynamic
scaling forms with renormalization group methods. It is also
important to investigate how the quenched disorder may af-
fect the domain-wall motion at the critical temperature. The
techniques used in this paper may be also applied to similar
dynamic systems.
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